2016年電験1種 電力管理問3

f:id:mahou:20190616110908j:plain

f:id:mahou:20190616110921j:plain

 (1)無限大母線電圧\dot{V}_iを基準にすると以下のベクトル図が書けて、

f:id:mahou:20190616224714j:plain

 \dot{V}_1=V_1,\dot{V}_g = V_g \exp(\sqrt{-1}\delta)となり、

f:id:mahou:20190616225147j:plain

 図の無限大母線系統より、発電機電流は

\displaystyle{ \dot{I} = \frac{ \dot{V}_g - \dot{V}_i}{\sqrt{-1} x_L }= \frac{V_g \exp(\sqrt{-1}\delta) - V_i}{\sqrt{-1}x_L} }

遅れ無効電流を正とすると、

 \displaystyle{P_g + \sqrt{-1} Q_g = \dot{V}_g \overline{\dot{I}} = V_g \exp(\sqrt{-1}\delta) \times \frac{V_g \exp(- \sqrt{-1}\delta ) - V_i}{-\sqrt{-1}x_L} }

\displaystyle{ = \sqrt{-1} \frac{{V_g}^2 - V_i V_g \exp(\sqrt{-1}\delta)}{x_L}= \frac{V_i V_g}{x_L} \sin \delta+\sqrt{-1}\frac{V_g}{x_L}(V_g - V_i \cos \delta)}

 \displaystyle{\therefore \sin \delta = \frac{P_g x_L}{V_i V_g}}

 \displaystyle{ \cos \delta = \sqrt{1 - \sin^2 \delta} = \sqrt{1 - \left(\frac{P_g x_L}{V_i V_g}\right)^2} }

 

 \therefore A= V_g, B=V_i, C=P_g x_L

 

 \displaystyle{ \dot{I} = \frac{P_g - \sqrt{-1}Q_g}{\overline{\dot{V}_g}}}

\displaystyle{ \dot{E}_f = \dot{V}_g + \sqrt{-1} x_g \dot{I} = V_g \exp(\sqrt{-1}\delta) + \frac{x_g Q_g}{V_g}\exp(\sqrt{-1}\delta) + \sqrt{-1}\frac{x_g Q_g}{V_g}\exp(\sqrt{-1}\delta)}

\displaystyle{ E_f = \sqrt{\left( V_g + \frac{x_g Q_g}{V_g}\right)^2 + \left(\frac{x_g P_g}{V_g}\right)^2} }

 

\displaystyle{\therefore D= \frac{x_g Q_g}{V_g}, E= \frac{x_g P_g}{V_g}}

 

(2)

\displaystyle{ Q_g = \frac{V_g}{x_L}\left\{V_g - V_i \sqrt{1 - \left(\frac{P_g x_L}{V_i V_g}\right)^2 } \right\} = \frac{1.03}{0.4}\left\{ 1.03 -0.83 \sqrt{1- \left( \frac{0.9\times 0.4}{0.83\times 1.03}\right)^2} \right\}}

Q_g \Doteq 0.7137 \Doteq 0.714 \mathrm{p.u}

 

\displaystyle{ E_f = \sqrt{\left( V_g + \frac{x_g Q_g}{V_g}\right)^2 + \left(\frac{x_g P_g}{V_g}\right)^2} = \sqrt{\left( 1.03 + \frac{1.8\times 0.7137}{1.03}\right)^2 + \left(\frac{1.8\times 0.9}{1.03}\right)^2} }

E_f \Doteq 2.7676 \Doteq 2.77 \mathrm{p.u.}

 

(3)

\dot{V}_iを基準とし、\dot{E}_fとの相差角を\delta_fとする。

\displaystyle{P_g= \frac{E_f V_i}{x_g+x_L} \sin \delta_f}

発電機内部の電流と流出する電流は同じなので、

 \dot{E}_f = \dot{V}_i + \sqrt{-1} (x_g + x_L) \dot{I}

また、

\displaystyle{\dot{V}_g = \dot{V}_i + \sqrt{-1} x_L \dot{I} = \dot{V}_i + \sqrt{-1}x_L \frac{\dot{E}_f - \dot{V}_i}{\sqrt{-1}(x_g+x_L)} = \frac{x_g}{x_g+x_L}\dot{V}_i + \frac{x_L}{x_g+x_L}\dot{E}_f}

\dot{E}_f = E_f \cos \delta_f +\sqrt{-1} E_f \sin \delta_fなので、

\displaystyle{ \frac{x_g}{x_g+x_L}V_i + \frac{x_L}{x_g+x_L}E_f( \cos \delta_f + \sqrt{-1}\sin \delta_f)}

\displaystyle{ {V_g}^2 = \frac{1}{(x_g+x_L)^2}\{ (x_g V_i + x_L E_f \cos \delta_f)^2 + (x_L \sin \delta_f)^2\} }

\displaystyle{= \frac{1}{(x_g+x_L)^2}( {x_g}^2 {V_i}^2 + 2 x_g x_L E_f V_i \cos \delta_f + {x_L}^2 {E_f}^2) }

\displaystyle{ \therefore V_g= \frac{1}{x_g+x_L}\sqrt{{x_g}^2 {V_i}^2 + 2 x_g x_L E_f V_i \cos \delta_f + {x_L}^2 {E_f}^2} }

\displaystyle{ \cos \delta_f = \sqrt{1 - \left\{ \frac{P_g(x_g+x_L)}{E_f V_i} \right\}^2} }

\displaystyle{G={x_g}^2 {V_i}^2+{x_L}^2 {E_f}^2, H=2 x_g x_L E_f V_i, J= \frac{P_g(x_g+x_L)}{E_f V_i} }

 

(4)

\displaystyle{V_g= \frac{1}{x_g+x_L}\sqrt{{x_g}^2 {V_i}^2 + 2 x_g x_L E_f V_i \sqrt{1 - \left\{ \frac{P_g(x_g+x_L)}{E_f V_i} \right\}^2} + {x_L}^2 {E_f}^2} }

\displaystyle{ = \frac{1}{1.8+0.4}\sqrt{1.8^2\times 0.83^2 +2\times 1.8 \times 0.4 \times 2.45 \times 0.83 \times \sqrt{1- \left\{ \frac{0.9(1.8+0.4)}{2.45\times 0.83} \right\}^2} + 0.4^2 \times 2.45^2} }

 \Doteq 0.8930 \Doteq 0.893

\displaystyle{ Q_g = \frac{V_g}{x_L}\left\{V_g - V_i \sqrt{1 - \left(\frac{P_g x_L}{V_i V_g}\right)^2 } \right\} = \frac{0.893}{0.4}\left\{ 0.893 -0.83 \sqrt{1- \left( \frac{0.9\times 0.4}{0.83\times 0.893}\right)^2} \right\}}

\Doteq 0.3739 \Doteq 0.374