2020-03-01から1ヶ月間の記事一覧
表題の場合についての基本方程式がそのまま成り立つからすべてのに対してが成り立つ。 平均到着率と平均サービス率に対してという条件をつける。ならば1時間当たり到着する人数の平均値がサービスを終える人数の平均値より大きいから窓口に並ぶ人は増加する…
来た人がサービスを受ける場所を窓口とよぶ。1つの窓口でのサービス時間の長さの分布がパラメーターの指数分布であると仮定して話を進める。サービス時間の分布の密度関数はである。すると、出口への到着時間間隔も同じ指数分布になり、このとき出口へ到着し…
時点から時点までの間に人到着する確率は時間間隔だけの関数であって、とは無関係である。この確率をだけの関数としてと書くことにするとパラメーターのポアソン分布を満たし、と書ける。期待値はであり、は時間内に到着する人数の平均値であるから、は単位…
という事象が起こるか起こらないかだけを問題とする。 定義 1回の試行での起こる確率を起こらない確率をつまりとする。回の試行でが回起こる確率を2項分布という。 命題 で与えられる。 証明 であるから、確率の事象が回、確率の事象が回起こる確率で与えら…