Laplace変換・逆変換 Laplace変換の例2

\displaystyle{I= \int_0^\infty \cos(at) \exp(-st)dt, J=\int_0^\infty \sin(at) \exp(-st)dt}

とおくと、

(\cos(at)\exp(-st))'= -a\sin(at)\exp(-st) -s\cos(at)\exp(-st)

(\sin(at)\exp(-st))'=a\cos(at)\exp(-st)-s\sin(at)\exp(-st)

 より

 -a J -s I = [\cos(at)\exp(-st)]_0^\infty= -1 

 a I-s J = [\sin(at)\exp(-st)]_0^\infty = 0

従って、

-a^2 J -s^2 J = -a, -s^2 I -a^2 I = -s

\displaystyle{ I= \int_0^\infty \cos(at) \exp(-st)dt = \frac{s}{s^2+a^2} }

\displaystyle{ J= \int_0^\infty \sin(at) \exp(-st)dt = \frac{a}{s^2+a^2} }

 

\displaystyle{\mathcal{L}[f(at)](s)=\int_0^\infty f(at) \exp(-st)dt}

\displaystyle{u=at, dt=\frac{du}{a}}と変換すると

\displaystyle{\mathcal{L}[f(at)](s)=\int_0^\infty f(u) \exp\left(-s\cdot\frac{u}{a}\right) \frac{du}{a} =\frac{1}{a} F\left(\frac{s}{a}\right)}